MENU
Canal 26
Buscar Noticias
OSA Argentina
27.09.2023  por TOTALMEDIOS

El dilema de los datos: del Data Lake al Data Warehouse

En un mundo dominado por los datos, ¿cómo balancear entre pocos datos y estar inundado por ellos? Diego Lis, CTO de Seenka Media Data, analiza soluciones a este dilema, partiendo de un Data Lake y llegando a un Data Warehouse, listo para ofrecer información valiosa y oportuna.

Por Diego Lis, CTO de Seenka Media Data

En un mundo dominado por los datos, enfrentamos un desafío: ¿Cómo balancear entre tener pocos datos y estar inundado por ellos? ¿De qué sirve tener muchos datos si no se usan? ¿Cómo diferenciar la paja del trigo?
Kantar IBOPE Media
Orillando el problema

Digamos que quieres conocer la presencia de tu marca en los medios. Tal vez necesitas entender cómo impacta esta presencia en tus ventas, optimizar tu inversión o comparar tu estrategia con la de tu competencia. En cualquier caso, vas a necesitar datos.

Contactas algunas agencias y proveedores y compras un CSV con datos del último trimestre. Luego de algunas semanas de análisis, compruebas que en ese trimestre has perdido decenas de oportunidades. Tomas nota de algunos aprendizajes, pero sabes que esas oportunidades no volverán a aparecer. Comprendes que la información la necesitas en tiempo real.

En busca de más

Por suerte, hay un mundo enorme de datos ahí afuera, esperando ser capturados y analizados. Mediante el método de scraping, capturas noticias de portales, contenido de redes sociales, e incluso te aventuras en el mundo de las señales audiovisuales como YouTube, televisión y radio.

Luego de un año de trabajo, ya tienes funcionando todos los crawlers que trabajarán día y noche. Decides almacenar la información en una base de datos no relacional que permite escalar en volumen y tener flexibilidad en el esquema de datos como Elastic Search o MongoDB.

Además, utilizas un Bucket de Google Storage o S3 para guardar la información audiovisual de manera fiable y performante. Creas así un Data Lake, es decir, un repositorio centralizado de datos en bruto.

Al poco tiempo tu Data Lake tiene millones de datos esperando que los uses. Sin embargo, la información que proviene de los medios es completamente heterogénea. Contiene textos, imágenes, audios, videos, cortos y largos, bien y mal escritos, etc. Necesitas, en efecto, transformar estos datos para normalizarlos y poder consumirlos de manera más homogénea.

Dando sentido a tus datos

La normalización de un dataset es particularmente importante en el caso de los medios. ¿De qué me sirve obtener diariamente el texto de miles de noticias si no sé a quién se menciona y de qué temática se habla? ¿Para qué saber que se han emitido cierta cantidad de publicidades si no puedo identificar cuál es la marca, el mensaje central de la misma, su audiencia e impacto?

Afortunadamente, viene a tu rescate el Machine Learning. En los últimos años, viene creciendo de manera exponencial el interés por este campo en el ámbito académico y en la industria. En este gráfico, podemos ver la cantidad de papers de inteligencia artificial que se han publicado en el sitio arXiv en los últimos 30 años.

Decides entonces contratar un equipo especializado de ingenieros de machine learning. Luego de dos años de trabajo aplicando decenas de técnicas, logras convertir tus datos "no estructurados" en datos "estructurados". Es decir, le das sentido a tus datos.

Y así decides utilizar un motor de base de datos relacional, como PostgreSQL o MySQL, donde vas guardando la información estructurada, normalizada y homogénea, para facilitar su análisis posterior. Estás por cantar victoria cuando descubres algo inquietante: la cantidad de datos que has acumulado, que ya llega a los centenares de millones, es tan grande que resulta demasiado lento hacer cualquier consulta medianamente compleja.

La etapa final: El Data Warehouse

Por fin, logras implementar una última etapa en tu pipeline: utilizas un base de datos orientada a columnas, como BigQuery o ClickHouse, para crear un Data Warehouse, es decir, una base de datos optimizada para el análisis y generación de informes.

En esta nota:

Otras noticias del día

Empresarias

Cinco pasos para transformar la ciberseguridad de escudo defensivo a motor de crecimiento

Según Gartner, el 85% de los CEOs ya la consideran clave para impulsar el negocio. Automatización, identidad digital y gobernanza inteligente: la fórmula que propone Cloud Legion para escalar de forma segura en la economía digital. Ver más

Empresarias

El helado ya no es solo de verano: crece el consumo asociado a reuniones sociales

Según un informe de AFADHYA, en Argentina, 9 de cada 10 personas consumen helado sin importar la temporada. En este marco, Arcor continúa impulsando el desarrollo del segmento en el canal tradicional con propuestas pensadas para compartir, acompañando tendencias globales con nuevos lanzamientos y nuevas experiencias de sabor. Ver más

Opinión

Bad Bunny y lo que deja a los profesionales del marketing y la publicidad después del Super Bowl

Miguel Ángel Ruiz (Bombay) analiza el impacto cultural del show de Bad Bunny en el Super Bowl como un gesto de representación para la comunidad latina en Estados Unidos y como un mensaje que trasciende lo musical. El textoy plantea un interrogante para el sector: cómo reaccionarán las marcas ante un fenómeno que combina cultura, política y emoción. Ver más

multimedia / campañas publicitarias

"Anti San Valentín"

Agencia: Tombrasniña Marca: Paso de los toros Soporte: Tv y web

La marca junto a su agencia crearon una pieza audiovisual que a través del humor y ese tono tan propio de la marca invitan a todos los solteros a festejar la noche previa al día que festejan todos los enamorados. Con un “Torito”, el trago que les dice a todos que estás disponible.

¿Qué estuvo haciendo Checo Pérez el último año?

Agencia:Almacén

Marca:Farmacias del ahorro

Soporte:Tv y web

Clash of Clans Valentine's Day

Agencia:David new york

Marca:

Soporte:Tv - digital

Inteligencia humana para proteger el agua en Chile

Agencia:Tombras niña

Marca: quili.ai

Soporte:

Vení adonde vamos - Autónomo

Agencia:Gut

Marca:Axion

Soporte:

Ver todos