MENU
Canal 26
Buscar Noticias
PHD Argentina
27.09.2023

El dilema de los datos: del Data Lake al Data Warehouse

En un mundo dominado por los datos, ¿cómo balancear entre pocos datos y estar inundado por ellos? Diego Lis, CTO de Seenka Media Data, analiza soluciones a este dilema, partiendo de un Data Lake y llegando a un Data Warehouse, listo para ofrecer información valiosa y oportuna.

Por Diego Lis, CTO de Seenka Media Data

En un mundo dominado por los datos, enfrentamos un desafío: ¿Cómo balancear entre tener pocos datos y estar inundado por ellos? ¿De qué sirve tener muchos datos si no se usan? ¿Cómo diferenciar la paja del trigo?
Kantar IBOPE Media
Orillando el problema

Digamos que quieres conocer la presencia de tu marca en los medios. Tal vez necesitas entender cómo impacta esta presencia en tus ventas, optimizar tu inversión o comparar tu estrategia con la de tu competencia. En cualquier caso, vas a necesitar datos.

Contactas algunas agencias y proveedores y compras un CSV con datos del último trimestre. Luego de algunas semanas de análisis, compruebas que en ese trimestre has perdido decenas de oportunidades. Tomas nota de algunos aprendizajes, pero sabes que esas oportunidades no volverán a aparecer. Comprendes que la información la necesitas en tiempo real.

En busca de más
Por suerte, hay un mundo enorme de datos ahí afuera, esperando ser capturados y analizados. Mediante el método de scraping, capturas noticias de portales, contenido de redes sociales, e incluso te aventuras en el mundo de las señales audiovisuales como YouTube, televisión y radio.

Luego de un año de trabajo, ya tienes funcionando todos los crawlers que trabajarán día y noche. Decides almacenar la información en una base de datos no relacional que permite escalar en volumen y tener flexibilidad en el esquema de datos como Elastic Search o MongoDB.

Además, utilizas un Bucket de Google Storage o S3 para guardar la información audiovisual de manera fiable y performante. Creas así un Data Lake, es decir, un repositorio centralizado de datos en bruto.

Al poco tiempo tu Data Lake tiene millones de datos esperando que los uses. Sin embargo, la información que proviene de los medios es completamente heterogénea. Contiene textos, imágenes, audios, videos, cortos y largos, bien y mal escritos, etc. Necesitas, en efecto, transformar estos datos para normalizarlos y poder consumirlos de manera más homogénea.

Dando sentido a tus datos

La normalización de un dataset es particularmente importante en el caso de los medios. ¿De qué me sirve obtener diariamente el texto de miles de noticias si no sé a quién se menciona y de qué temática se habla? ¿Para qué saber que se han emitido cierta cantidad de publicidades si no puedo identificar cuál es la marca, el mensaje central de la misma, su audiencia e impacto?

Afortunadamente, viene a tu rescate el Machine Learning. En los últimos años, viene creciendo de manera exponencial el interés por este campo en el ámbito académico y en la industria. En este gráfico, podemos ver la cantidad de papers de inteligencia artificial que se han publicado en el sitio arXiv en los últimos 30 años.

Decides entonces contratar un equipo especializado de ingenieros de machine learning. Luego de dos años de trabajo aplicando decenas de técnicas, logras convertir tus datos "no estructurados" en datos "estructurados". Es decir, le das sentido a tus datos.

Y así decides utilizar un motor de base de datos relacional, como PostgreSQL o MySQL, donde vas guardando la información estructurada, normalizada y homogénea, para facilitar su análisis posterior. Estás por cantar victoria cuando descubres algo inquietante: la cantidad de datos que has acumulado, que ya llega a los centenares de millones, es tan grande que resulta demasiado lento hacer cualquier consulta medianamente compleja.

La etapa final: El Data Warehouse

Por fin, logras implementar una última etapa en tu pipeline: utilizas un base de datos orientada a columnas, como BigQuery o ClickHouse, para crear un Data Warehouse, es decir, una base de datos optimizada para el análisis y generación de informes.

En esta nota:

Otras noticias del día

Campañas

“La carga del silencio”, la campaña de Ogilvy Barcelona contra el abuso sexual inftanil

“La carga del silencio” es la campaña de concienciación, ideada de forma altruista por la agencia Ogilvy Barcelona, que sensibiliza sobre lo que conlleva guardar silencio de una realidad que afecta a uno de cada cinco menores según estudios de la Organización Mundial de la Salud (OMS). Ver más

Premiaciones

Adsmovil ganó el Premio APSAL Latam 2023 en la categoría sustentabilidad

La compañía ha sido reconocida por la iniciativa de compensación en la huella de carbono que viene adelantando desde hace varios años atrás. Adsmovil desde hace varios años se propuso la manera de disminuir su impacto en el medio ambiente en una industria como la de la publicidad digital. Ver más

Premiaciones

Todos los ganadores de Diente 2023

Anoche se realizó una nueva edición de Diente, el festival que premia lo mejor de la publicidad argentina. La celebración se llevó a cabo en el teatro Vorterix y GUT Buenos Aires resultó Agencia del año, Cervecería y Maltería Quilmes fue el Anunciante del año y la productora del año fue Primo Content.
Ver más

multimedia / campañas publicitarias

“Ejes del Movimiento”

Agencia: Adn comunicación Marca: Curflex triple acción Soporte: Tv y web

La marca lanzó Curflex Triple Acción. La campaña toma como concepto creativo la premisa de que “el movimiento del cuerpo se apoya en tres ejes principales”. La comunicación es 360° y cuenta con comerciales para TV, gráfica, redes sociales y medios digitales.

“Cobrá sin vueltas”

Agencia: -

Marca: Getnet

Soporte: Tv-radio-digital

Despertá la magia navideña que vive en vos

Agencia: -

Marca: Coca cola

Soporte: Tv

"Datos"

Agencia: Bbdo argentina

Marca: Bbva

Soporte: Tv-radio-rrss-digitales

"Donde el deporte se hace realidad"

Agencia: Ogilvy madrid

Marca: Decathlon

Soporte: Tv y web

Ver todos